Advancement in Microelectronics Packaging for Medical Implants: 
Solving the Need for “More” with “Less” Space

Caroline Bjune
07 May 2019
What Does Medical Device Packaging Mean?

• Packaging in the traditional sense in the medical community pertains to the external package housing the device.
  – *Subjected to and required to meet transport and shelf-life specifications*
  – *Typically requires custom designed trays and sealing process*
What Does Medical Device Packaging Mean?

• Today’s talk pertains to the device or system itself:
  – *Electronics (internal guts of the device)*
  – *components (ASICs, SMTs, discrete)*;
  – *circuit board (rigid, flex, rigid-flex)*

Photo: MST/Dyconex, https://www.mst.com/dyconex/
What Does Medical Device Packaging Mean?

• Today’s talk pertains to the device or system itself:
  – Electronics (internal guts of the device)
    – components (ASICs, SMTs, discrete)
    – circuit board (rigid, flex, rigid-flex)
  – Enclosure of the electronics – hermetic, biocompatible, impact resistance, RF transparent where applicable (other considerations: form factor)

Photo: MST/Dyconex, https://www.mst.com/dyconex/
What Does Medical Device Packaging Mean?

Today’s talk pertains to the device or system itself:

- **Electronics** (internal guts of the device)
  - components (ASICs, SMTs, discrete);
  - circuit board (rigid, flex, rigid-flex)

- **Enclosure of the electronics** – hermetic, biocompatible, impact resistance, RF transparent where applicable (other considerations: form factor)

- **Interconnect** (how to bring the functions from the inside out to world, i.e. communication)

Photo: MST/Dyconex, https://www.mst.com/dyconex/
What Does Medical Device Packaging Mean?

• Today’s talk pertains to the device or system itself:
  – Electronics (internal guts of the device)
    – components (ASICs, SMTs, discrete)
    – circuit board (rigid, flex, rigid-flex)
  – Enclosure of the electronics – hermetic, biocompatible, impact resistance, RF transparent where applicable (other considerations: form factor)
  – Interconnect (how to bring the functions from the inside out to world, i.e. communication)
  – Power (battery within the implant; wirelessly powered)

Photo: MST/Dyconex, https://www.mst.com/dyconex/
What Does Medical Device Packaging Mean?

- Today’s talk pertains to the device or system itself:
  - Electronics (internal guts of the device) – components (ASICs, SMTs, discrete); circuit board (rigid, flex, rigid-flex)
  - Enclosure of the electronics – hermetic, biocompatible, impact resistance, RF transparent where applicable (other considerations: form factor)
  - Interconnect (how to bring the functions from the inside out to world, i.e. communication)
  - Power (battery within the implant; wirelessly powered)
  - Interfaces with other sub-systems (i.e. leads, controller)

Photo: MST/Dyconex, https://www.mst.com/dyconex/
The Evolution of Neuromodulation

From cardiac to neuro: variations on a common theme

1960s Pacemaker
1970s Pacemaker
1980s Cochlea
1990s Spinal Pain
2000s DBS
2010s Epilepsy
Deep Brain Stimulation (DBS)

Implantable Pulse Generator (IPG)

Personalized Responsive Therapies

Smarter, Responsive Closed-loop Therapies

Distributed Multimodal Sense + Stim

Smaller, Denser Electrodes

Limitations of Current Technology

Function & Channels

Miniaturization
Miniaturization without Compromise

Function & Channels

- Electrodes
- Recording
- Stimulation
- Low Power
- Algorithms
- Wireless
- Miniaturization
- Packaging
- Safety

Small
Smart
Safe
Scalable
Neurotechnology Development at Draper

- **Deep Brain Stimulation (DBS)**
- **Peripheral Nerve Stimulation**
- **Stimulation Particle**
TRANSFORM DBS

Distributed, multi-modal, closed-loop neuromodulation

Central Hub
Closed-loop Processing

Wireless Sensors
Biometrics + Patient Input

5 Satellites
Record + Stim

Base Station
Streaming + PC Link

TRANSFORM DBS

• 320 channels
• Responsive stimulation
• Record Spikes + LFP
• Multi-modal data fusion
• Wireless data streaming
• PERSONALIZED TREATMENT

Neupace

• 8 channels
• Responsive stimulation
• Record LFP only

Medtronic PC+S

• 4 channels
• Constant stimulation
• Record LFP only
• Leads/cables transverse through neck
Satellite System

Miniaturized Hermetic Enclosure:
- Designed to fit within a 14mm diameter surgical burr hole
- Rigid-flex board – enables folding of electronics
- 81-pin high density ceramic feedthrough plate and titanium enclosure
- Each satellite can accommodate up to 64 channels (electrodes; COTS connectors); connects to hub cable
Satellite – Miniaturization

• Increasing functionality in a limited footprint required:
  – *Custom designed ASIC’s*
  – *Combination of traditional rigid with flex → Rigid-flex design*
  – *Dual sided design for each*
  – *Low profile BGA-style attached*

• Challenges:
  – *Incorporating COTS components*
    • Amplifier (die)
    • FPGA (SMT)
    • Passives
  – *Size limitation prohibited blocking capacitors for all channels*
  – *Complex design*
    • Increase design time
    • Vendor sourcing (fab and assembly)
Satellite – Miniaturization

• Increasing functionality in a limited footprint required:
  – *Custom designed ASIC’s*
  – *Combination of traditional rigid with flex → Rigid-flex design*
  – *Dual sided design for each*
  – *Low profile BGA-style attached*

• Improvements in the future
  – *Reduction of COTS components where possible*
  – *Flip chip and/or die stacking approach (interposer)*
  – *Decrease pin (d) and/or increase pin pitch*
  – *Goal to simply PCB design*
    • Reduce number of pedestals
    • Increase feasibility of manufacturing and assembly
    • Decrease fabrication time
    • Increase feasibility of testing
Satellite – Connecting to the Outside

- Development process for each wire type
  - Various wire diameter \( (\text{pin } d = 10\text{mil}) \)
  - Dissimilar materials \( (\text{pin } = 90/10 \text{Pt/Ir}) \)

- To strip or not too strip?
  - Bond strength and robust
  - Method, potential damage, time

Hub cable (5mil Pt/Ir wire)

ECOG, DBS Electrodes (1mil Pt/Ir wire)

Microelectrode array (1mil Au wire)

Wire bundles to COTS connectors (2mil Pt/Ir wire)
Feedthrough Interconnection Challenges

Challenge #1 – Laser welding of EACH INDIVIDUAL wire to pin

• Labor intensive; process development often required
• As number of channels per electrodes increase, proper handling and tracking of each electrode wire to pin becomes more of a challenge.
Feedthrough Interconnection Challenges

Challenge #2 – Splitting and re-bundling 64 channel electrode was required

• Resulted in an increase to satellite size
  – Too large for implanting high channel electrodes into animals for clinical research
• Ultimately need scales with wire counts.
  – As channel count increase, so does this problem

Satellite package (d): 13.75mm
With flange and overmold (d): 18.5 mm

6mm (exterior to skull)
6.5mm (in skull)
Feedthrough Interconnection Solutions

Potential Solutions:

• Recesses in feedthrough flange
  – Enables wires splay when exiting
  – Provides specific entry points for each cable/bundle

• Design a flex interconnect cable
  – Interface between feedthrough and electrodes
  – Integrate electrode contacts (i.e. flex electrode) or interconnects to components/system
Central Hub System - Modular

• Three discrete subsystems:
  – Electronics system – PCB’s, antenna
  – Rechargeable battery
  – High density custom connector

• Flex cable integrate electronics and battery to connector

• System’s curvature can be set by encapsulation tool

• Advantages of modular approach
  – Custom design curvature to meet specific patient’s requirements
  – Discrete battery enables introduction of new battery without the need for redesigning the entire package/housing
  – Each subsystem can be tested and validated individually → reducing the risk of losing the entire system
Central Hub System

- Electronics system—PCBs, antenna with ferrite
  - 64-pin ceramic feedthrough plate with titanium flange
  - Alumina cover (RF transparent) with a titanium flange (hermetic seal)

Low-Power Processor & Stimulator ASICs:
- Neural signal processing and stimulation control

AC Power Management:
- Power conversion and distribution to satellites

Dual Telemetry:
- Long-range controller link for reprogramming
- High-bandwidth link for neural data to an external base station
Central Hub System

- Electronics system– PCBs, antenna with ferrite
- Rechargeable battery
  - Medical, implantable grade cell
  - Protection PCB
  - Hermetically sealed (Ti to Ti)
  - Titanium housing also serves as system’s ground
Central Hub System

- Electronics system—PCBs, antenna with ferrite
- Rechargeable battery - Housing also serves as system’s ground
- High density custom connector system
  - ~ 5x volume reduction compare to traditional connector systems
  - Housing contains 5 x 10 contacts sockets (50 contacts total)
  - Locking clip secures each plug/cable to housing
  - Each cable is hardwired to a satellite
Central Hub System

- Electronics system – PCBs, antenna with ferrite
- Rechargeable battery - Housing also serves as system’s ground
- High density custom connector system
- Flex cable integrate electronics to connector pins
- System’s curvature can be set by encapsulation tool
More than 185,000 amputations are performed annually in the US.
Lack of realistic sensations of touch hampers effective use of prosthetic limbs.

Program’s Objective - Create a prosthetic hand system that could move and provide sensory feedback like a natural hand would do
- Requires development of next generation neuro-technologies to provide sensory stimulation (touch and proprioception) for enhanced prosthetics.
HAPTIX Passive System Overview

**Implanted Components**

- LIFE Electrode
- LIFE Electrode
- Sensory-Stimulation Lead
- SSL Assembly
- Adaptor PCB (on arm)

**External Components**

- SAMTEC To Micro-D cable
- Emergency Shutdown switch
- Optical to USB converter
- Optical cable
- USB to Optical converter
- Isolated Power supply
- Percutaneous Controller

**Skin Interface**

Diagram showing the connection between implanted and external components.
L.I.F.E. Electrodes – Validated as a Passive System

- Longitudinal Intra-Fascicular electrodes (LIFE) → fine featured electrodes designed to be implanted within the body of the peripheral nerve.
- Allows interrogation and stimulation of both sensory and motor nerve fascicles with the same device.
  - 6 cuff electrodes (1) for macro recording, stimulation, and a secure anchoring point around the nerve
  - 9 intra-neural electrodes (2) for micro recording and stimulation for more precise motor control and sensory perception
  - A needle at the tip (3) allows for easy implantation and simplifies implantation within individual motor and sensory fascicles for safer and more reliable access to targeted neurons
Electrodes Percutaneous Leads

• Use for connecting each electrode to the external system
• Arranged as bundles of four wires (quads).
• Each quad consist of a section of helical coil - allows for the movement of the cable without breakage.
  – Also aids in forming closure around the tunnel opening where the bundles exit the skin to plug into the connector.
• Bundles and individual wires are color coded with biocompatible heat shrink tubing for signal identification.
• The bundles separate out into individual wires once outside the skin.
  – Proximal and Crimp Pins inserted into a connector block for interfacing with external controller.
Passive Leads – Animal and Cadaver Implants

• Verification of the nerve interface:
  – *Histology of tissue response and stimulation threshold stability*
  – *Stimulated on different electrode sites*
  – *120 days+ of rodent studies*
  – *Acute NHP studies*

• Cadaveric assessment of electrodes placement for surgical optimal position for human clinical studies

120 days+ rodent study
Passive Leads – Clinical Outcome

Passive Implants

90-day implants in 2 human patients
HAPTIX Active System Overview

L.I.F.E. Electrodes Combined with Implant Device for Recording and Stimulation

Implanted Components

External Components
SSL Satellite - Overview

- Active electronics interfaces with the electrodes and controller system (via percutaneous leads).
- Consists of:
  - Ceramic feedthrough substrate
  - Titanium can
  - Double sided PCB
- Electrodes hardwired to the satellite (feedthrough)
  - LIFE
  - EMG’s
- Satellite device size:
  - ~ 14mm (diameter), < 5mm (height)
# Active Electronics – Draper Designed ASIC’s

## Callout #  |  Draper ASIC
---|---
1 | High Voltage Charge Pump
2 | AC-to-DC Power Conversion
3 | Neural Amplifier
4 | Cross-point Switch

### Recording
- 30 recording channels
- Multiplexed up to 30 kHz
- 1.5 µV RMS noise (700 Hz – 5 kHz)
- 36 dB gain

### Stimulation
- 30 stimulation channels
- 2 simultaneous stimulation pulses
- Multiplexing capable on all channels
- Pulse resolution of 1 µA and 1 µs

### Bottom side
- Double capacitors for protection (0201, 01005)
- Contact pads for feedthrough attachment (testing prior)

Height < 5mm

- [Draper ASIC callouts](#)
SSL Satellite Enclosure

- Alumina feedthrough substrate
  - Pt/Ir pins
  - Arrayed in sections for each electrodes and bundles of percutaneous leads
  - Alumina substrate brazed to Ti flange
  - SMT component size on the pin side of the board drives internal pin height
  - Recesses in flange provides entry points for each electrodes and percutaneous leads
    - Enables wires to spread out, thus reducing excess height from the bundling of wires
- Titanium cover
  - Laser welded to feedthrough flange (hermetic)
  - Laser marking on surface for system serialization and traceability
Leads Attachment to SSL Satellite

- Dissimilarity in materials (stainless steel wires and Pt/Ir pins) → Pt sleeves were used in early feasibility studies.
  - Provides additional thermal mass
  - Provides additional support at the weld joint.

- Additional refinement in welding parameters
  - Weld joints and pull strength of wires same, if not more, than with sleeve (≥ 1 lb force)

- Advantage of not using the sleeves:
  - Ability to observe wire contact during welded
  - Ability for rework if needed
SSL Overmolding

- Custom designed encapsulation tool for overmolding the satellite
  - Dual layer process: epoxy followed by silicone.
  - “Boot” design for cable strain relief

Backer card for shipping
Networked Active Leads System

- **Controller Module**: Neural Decode + Encode
- **Cuff Antennas**: Wireless Power + Data
- **Electrodes**: Muscle + Nerve
- **SSL Satellite**: Recording + Stimulation
- **Robotic Hand**: Movement + Touch
Leadless System

Leadless implants improve scalability and flexibility

- Gemstones
  Recording + Stimulation

- Electrodes
  Muscle + Nerve

- Cuff Antennas
  Wireless Power + Data

- Robotic Hand
  Movement + Touch

- Controller Module
  Neural Decode + Encode
Leadless Gemstone Device

Implanted Gemstone Device Connected to Electrodes
Wireless Gemstone Device

Draper Custom Designed ASIC’s Enable Efficient Microelectronics Packaging

Gemstones
Recording + Stimulation

Amplifiers
Stim DAC
Switch Matrix
Bio Radio
Power

ASICs
Wireless Gemstone Device

Gemstone to Wearable Cuff Antennas Communicates and Powers

Cuff Antennas
Wireless Power + Data
Leadless and Wireless System

Leadless implants improve scalability and flexibility

Stimulation produces sensory percepts

Recordings control hand movement
Stimulation Particles

Single wearable antenna patch can coordinate therapies on up to 10 particles.
Draper’s Neurostimulator Particle
Future for Advanced Microelectronics Packaging and Assembly

Medical Device and Diagnostic Industry (MDDI) article “How FDA Hinders Medical Device Innovation” (2015)

“FDA is slow to adopt evaluation guidelines for novel medical device technologies… small companies are paying the price”

Unique Challenges:
- Robust Design for Daily Use
- Hermetic
- Mechanical and Thermal Stability
- Biocompatibility (novel materials – leachable, delamination)
- Sterility and Packaging
- EMC Compatibility
System Safety and Reliability Designs

- Biocompatible, non-cytotoxic materials
  - *Chemically stable in in vivo environment*
  - *Metals and ceramics exposed to in vivo environment: Ti, Alumina for package body, Pt/Ir for electrodes, SS316 LVM, Pt/Ir, Au for lead wires*
  - *Insulators: Silicone, epoxy*

- Mechanical stability, reliability
  - *TRANSFORM – Impact resistance*
  - *HAPTIX - reliable against muscular motion, pistoning of electrodes at the percutaneous interface*

- Safety
  - *Intrinsically safe electrical design (i.e. power consumption vs. T rise)*
  - *Electronics safe during surgical insertion (against electrocautery etc.)*
  - *HAPTIX - minimal damage to nerve during electrode insertion*
Future for Advanced Microelectronics Packaging and Assembly

- Increase functionality → Increase power requirement and/or space (volume, footprint)
- Increase channel sites → Increase feedthrough I/O and connector

**Unique Challenges:**
- Efficient Electrical Design
- Wireless Design
- Battery Technology
- Connector Technology
Future for Advanced Microelectronics Packaging and Assembly

• Increase functionality → Increase power requirement and/or space (volume, footprint)
• Increase channel sites → Increase feedthrough I/O and connector

Areas for Innovation

✓ Custom Designed ASIC’s → Miniaturization, Performance
✓ Wireless Design → Reduction in connection cables, Removal of battery
✓ Battery Technology
✓ Connector Technology
A Vision for Next-generation Therapies

- Informed decisions
  - Systems-level view of disease

- Precise & coordinated therapies
  - Exactly the right place
  - Exactly the right time

- Personalized care
  - Responsive feedback to patients and clinician
Acknowledgements

• TRANSFORM DBS and HAPTIX work was supported by the Defense Advanced Research Projects Agency (DARPA), Biological Technologies Office (BTO).

• Neurostimulation Particle work originated as a Draper’s Internal Research and Development Program. Current work supported by AHA and NIH.

• Collaborative effort with:
  – Massachusetts General Hospital
  – Nerves, Inc.
  – University of Texas-Southwestern
  – Arizona State University
  – University of Texas – Dallas
  – Numerous members at Draper
Questions?