Addressing the Design Challenges of RF/ Millimeter Wave Semiconductor Packaging

Craig Vieira – RF Designer

Content Overview

• Company Overview
 – What we do
 – Markets served
 – RF/ high frequency interconnect experience

• What’s new in 2016
 – RF Design, Test & Measurement capabilities
 – Portfolio additions & innovative technology

• Design Challenges in high speed Interconnects
 – Think like a wavelength & remember waveguide theory
 – Managing bandwidth, loss, and signal fidelity
Ametek Electronic Packaging Overview

- Ametek, Inc.
 - $4B sales, 15k employees worldwide
- Electronic Packaging Division specializes in Hermetic microelectronic package design & manufacturing
 - Glass-to-metal seals
 - Ceramic-to-metal seals
 - Ceramic packages
- Who we are
 - Aegis
 - Glassseal Products
 - SCP

www.ametek-ecp.com
Ametek Electronic Packaging Overview

• Markets served
 – Defense
 – Industrial
 – Aerospace
 – Optical Communications
I/O Types

- **SMA**
 - DC- 26GHz
- **K, V, W**
 - 40, 67, 110GHz
- **SMP**
 - Equivalent to GPO
 - 26GHz
- **SMPM**
 - Equivalent to GPPO
 - 40GHz
- **SMPS**
 - Equivalent to G3PO
 - 65GHz

Applications

- Hermetic coaxial connectors standalone
- Optical modulators
- Defense

www.ametek-ecp.com
Personal Introduction

• Application & Design Experience
 – ATE, semiconductor test
 • Packaged & wafer
 – DC – 80GHz
 – Passive & Active RF/ mm Wave design
 – Joined Ametek in June 2015
What’s New for 2016

• SMPx series
 – In house design, specification & datasheet
 – Test & evaluation boards
 – Customization options

• HTCC R&D Continues
 – S-Bend
 • Alpha design showing performance to 35GHz
 • Beta design intends to meet 50GHz
 – High speed flat solutions
 • Several variations
 • Feasibility study underway

www.ametek-ecp.com
Design Challenges of RF & Millimeter Wave

- Passive circuitry tradeoffs
 - Bandwidth
 - Insertion Loss
 - Size
 - Crosstalk/ signal fidelity
 - Cost
Think Like a Wavelength

• At lower frequencies, wavelength (λ) is not normally a concern
• Commercial RF market bulk spectrum is <6GHz
• Optical market example 40GHz+

\[\text{λ Comparison}\]

<table>
<thead>
<tr>
<th>Medium</th>
<th>Dk</th>
<th>6GHz</th>
<th>40GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>1</td>
<td>2”</td>
<td>0.3”</td>
</tr>
<tr>
<td>High Quality PCB</td>
<td>3.5</td>
<td>1.05”</td>
<td>0.16”</td>
</tr>
<tr>
<td>Ceramic</td>
<td>9.5</td>
<td>0.64”</td>
<td>0.1”</td>
</tr>
</tbody>
</table>
Keep Thinking Like a Wavelength

$\lambda/2$ Comparison

<table>
<thead>
<tr>
<th>Medium</th>
<th>Dk</th>
<th>6GHz</th>
<th>40GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>1</td>
<td>1”</td>
<td>0.15”</td>
</tr>
<tr>
<td>High Quality PCB</td>
<td>3.5</td>
<td>0.55”</td>
<td>0.08”</td>
</tr>
<tr>
<td>Ceramic</td>
<td>9.5</td>
<td>0.32”</td>
<td>0.05”</td>
</tr>
</tbody>
</table>

Observe as frequency increases, wavelength decreases.

$\lambda/4$ Comparison

<table>
<thead>
<tr>
<th>Medium</th>
<th>Dk</th>
<th>6GHz</th>
<th>40GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>1</td>
<td>0.5”</td>
<td>0.075”</td>
</tr>
<tr>
<td>High Quality PCB</td>
<td>3.5</td>
<td>0.275”</td>
<td>0.04”</td>
</tr>
<tr>
<td>Ceramic</td>
<td>9.5</td>
<td>0.16”</td>
<td>0.025”</td>
</tr>
</tbody>
</table>

Observe as Dk increases, wavelength decreases.
Now Remember Waveguide Theory

- **Circular Waveguide**
 \[\lambda_{c,mn} = \frac{2 \cdot \pi \cdot r}{p_{mn}} [m] \]

- **Rectangular Waveguide**
 \[(f_c)_{mn} = \frac{1}{2 \cdot \pi \cdot \sqrt{\mu \varepsilon}} \sqrt{\left(\frac{m \cdot \pi}{a}\right)^2 + \left(\frac{n \cdot \pi}{b}\right)^2} [Hz] \]
 \[(\lambda_c)_{mn} = \frac{2}{\sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}} [m] \]

- ↑BW ↓λc
- ↓λc ↓r
- ↑BW ↓λc
- ↓λc ↓a
Circular Waveguide – Real World Coax

- Example hermetic male shroud SMPM connector
- Fc limited by conventional glass bead diameter

<table>
<thead>
<tr>
<th>Dielectric</th>
<th>Application</th>
<th>Er</th>
<th>Zo(Ω)</th>
<th>d (mils)</th>
<th>D (mils)</th>
<th>Fc (GHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>Ideal world</td>
<td>1</td>
<td>50</td>
<td>12</td>
<td>28</td>
<td>187.8</td>
</tr>
<tr>
<td>PTFE</td>
<td>F/F SMPM bullet</td>
<td>2.1</td>
<td>50</td>
<td>14</td>
<td>47</td>
<td>85</td>
</tr>
<tr>
<td>Glass Orig</td>
<td>Existing designs</td>
<td>4.1</td>
<td>50</td>
<td>12</td>
<td>65</td>
<td>48</td>
</tr>
</tbody>
</table>
Circular Waveguide – Real World Coax

- Push the SMPM bandwidth by making the TE11 mode propagate higher in frequency
- How?

TE11 S11 v. Frequency & Connector Geometry

![Graph showing TE11 S11 vs Frequency & Connector Geometry](chart.png)
Rectangular Waveguide Theory – HTCC

• What factors limit the transmission line BW?
Fc Limitations in HTCC

- Substrate Thickness – TE1 mode
 - Parallel plate waveguide / Surface waves
 - To be kept < $\lambda/4$, simulation suggests $\lambda/5$

$\lambda/4$ Comparison

<table>
<thead>
<tr>
<th>Medium</th>
<th>Dk</th>
<th>6GHz</th>
<th>40GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>1</td>
<td>0.5”</td>
<td>0.075”</td>
</tr>
<tr>
<td>High Quality PCB</td>
<td>3.5</td>
<td>0.275”</td>
<td>0.04”</td>
</tr>
<tr>
<td>Ceramic</td>
<td>9.5</td>
<td>0.16”</td>
<td>0.025”</td>
</tr>
</tbody>
</table>

- Thinner material is better for higher frequencies
 - But worse for handling, insertion loss, heat, etc.
Fc Limitations in HTCC continued

- Ground spacing
- Consider CPWG
 - \(s < \lambda/2 \) (ground separation)
 - Actual limitation is based on via fence location
 - ‘s’ is like broad wall dimension ‘a’ of rectangular waveguide
λ/2 in HTCC

- Via spacing must be < 0.050” for 40GHz mode-free operation

λ/2 Comparison

<table>
<thead>
<tr>
<th>Medium</th>
<th>Dk</th>
<th>6GHz</th>
<th>40GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>1</td>
<td>1”</td>
<td>0.15”</td>
</tr>
<tr>
<td>High Quality PCB</td>
<td>3.5</td>
<td>0.55”</td>
<td>0.08”</td>
</tr>
<tr>
<td>Ceramic</td>
<td>9.5</td>
<td>0.32”</td>
<td>0.05”</td>
</tr>
</tbody>
</table>
S-Bend Concept

• Ametek patented the S-Bend concept for HTCC feedthroughs

• Provides a smooth RF signal path with no abrupt transitions nor signal vias
S-Bend Baseline Analysis

- 3D EM Simulation performed on flat HTCC to provide a baseline for results
- Does waveguide theory apply?
S-Bend Baseline Broad Wall Vias

Via Spacing Comparison

<table>
<thead>
<tr>
<th>Via Spacing</th>
<th>Fc Theory</th>
<th>Fc Simulated</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.030”</td>
<td>65GHz</td>
<td>54GHz</td>
</tr>
<tr>
<td>0.050”</td>
<td>38GHz</td>
<td>38GHz</td>
</tr>
<tr>
<td>0.070”</td>
<td>27GHz</td>
<td>29GHz</td>
</tr>
</tbody>
</table>

Why the difference?
Fc Limitations in HTCC continued

- Via ground fence – pitch
- Vias parallel to CPWG signal trace must be spaced $< \lambda/4$ ('p' – 'd')
S-Bend Baseline Via to Via Fence Spacing

<table>
<thead>
<tr>
<th>Via Spacing</th>
<th>P-d</th>
<th>Fc Theory</th>
<th>Fc Simulated</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.015”</td>
<td>0.011”</td>
<td>87GHz</td>
<td>54GHz</td>
</tr>
<tr>
<td>0.020”</td>
<td>0.016”</td>
<td>64GHz</td>
<td>52GHz</td>
</tr>
<tr>
<td>0.025”</td>
<td>0.021”</td>
<td>45GHz</td>
<td>41GHz</td>
</tr>
<tr>
<td>0.030”</td>
<td>0.026”</td>
<td>37GHz</td>
<td>34GHz</td>
</tr>
</tbody>
</table>

![Graphs showing S21 and S11 vs. Via to Via Pitch](image-url)
S-Bend Baseline Via to Via Fence Pitch

- Another way to look at it, view the results with respect to the TE10 mode

![Graph showing TE10 Mode vs. Via to Via Pitch with frequencies 36GHz, 45GHz, and 52GHz marked]
Rectangular Waveguide Theory – Real World

• Where can we go, and how do we get there?
 – Increase bandwidth, decrease thickness
 – Decrease thickness, decrease line widths to maintain 50Ω
 – Decreasing signal widths, increased insertion loss
 – Decreased size, increased crosstalk

• Managing Tradeoffs – design for maximum frequency and not much more
Today & Tomorrow

• More bandwidth!
 – IOT (Internet of Things)
 – Smartphones, tablets, PCs, etc.
 – Smart TV’s, streaming entertainment

• Markets are driven to push bandwidth, enabling faster communication networks

• 100G & 400G Ethernet need high speed I/O
Q & A

- Thank you for your time, any questions or comments?

Craig Vieira
RF Design Engineer
Ametek Electronic Components & Packaging
50 Welby Rd, New Bedford, MA 02702
+1 (508) 998-4368